
 Report: Multi-Modal Side-Channel Attack on Keyboard Presses

 Yichen Cai, University of Toronto

 Abstract

 Side-channel attacks exploit the information leaked by
 normal user activities to infer sensitive data. It poses a
 threat to cybersecurity as it often leaks data in unexpected
 ways. This project presents a novel approach to leaking
 keystroke information using a multi-modal machine
 learning algorithm that processes both audio and video
 inputs. The audio input is segmented by an improved
 algorithm that detects and estimates the time window for
 each recorded keystroke. And with the time window, we
 can easily predict the exact frame of the keypress within
 the video input. Both inputs are processed with their
 respective neural networks and their results are weighted
 by an attention network which balances the two
 modalities. Finally, the entire detected string is refined by
 a pre-trained GPT model so that it enhances coherence
 and denoises the string. This integrated approach
 demonstrates significant potential in improving the
 accuracy of keystroke side-channel attacks. Project code
 is located at:
 https://github.com/cycv5/SideChannelOnKeyboard

 1. Introduction

 Side-channel attacks have often emerged as unexpected
 ways to leak sensitive information in cybersecurity. These
 attacks leverage the unintended channels of emission like
 electromagnetic radiation, power consumption, or
 acoustic data, to infer the actual data being processed.
 Acoustic side-channel attacks have been explored and
 gained significant attention as it can capture keystroke
 sounds and deduce the corresponding key.

 This paper explores a novel approach to keystroke
 side-channel inference by utilizing a multi-modal machine
 learning algorithm that analyzes both acoustic and visual
 information. Since video and audio capturing devices
 have become easily accessible, it is feasible to get both
 video and audio data from a person typing on a keyboard.
 This can be done through a webcam (as in this project), a
 smartphone, or a specially made hidden
 camera/microphone device. The data are then

 preprocessed by a custom algorithm to extract the audio
 and video frame of the key presses. And the two types of
 input are processed independently first and combined
 later.

 To address the potential noise in the inference due to
 misclassification, a pre-train large language model (LLM)
 is used (GPT 3.5) to refine, correct and clean the output.
 This enhances the overall coherence of the output data.
 The integrated method gives higher accuracy and more
 robustness because of the LLM.

 2. Related Work

 Previous works on this topic have focused on a single
 channel of attack.

 A Practical Deep Learning-Based Acoustic Side
 Channel Attack on Keyboards [1]

 This paper proposed a method of extracting the data from
 keyboard strokes audio. They recorded audio of people
 typing on a keyboard and partitioned into fixed length
 keystrokes. Then those data are augmented and trained
 with a CoAtNet - a combination of CNN and the attention
 mechanism. They found good accuracy with this method
 (95% accuracy). However, this method requires clear
 recording of the typing sound and errors are seen for keys
 that are close to each other.

 Towards a General Video-based Keystroke Inference
 Attack [2]

 This paper proposed a video-based method for detecting
 keystrokes. It uses hand recognition to build a model of
 touch points on a plane and determine which keys are
 pressed. The paper measures the semantic similarity and
 shows that with an indoor setting, the similarity score can
 be 98%+. However, this requires a clear detection of key
 presses (and a frontal view of the typer) - without
 additional visual distractions.

 3. Method

 The combination of the audio and video input can create a
 more robust yet simpler detection algorithm. The audio
 data can help pinpoint the exact time of key presses, thus

 giving us the timing information for a keypress. This, in a
 way, denoises the video feed and aids us in finding the
 corresponding frames in the video. The video, at the same
 time, gives a direct view of the hand positions that helps
 with the final classification result, paired with the audio
 data. This is especially helpful to distinguish key presses
 that are close to each other. Finally, a pre-trained LLM
 model will be employed to fix any noise in the output.

 3.1. Data Preprocess

 Audio and video data captured must be preprocessed for
 the downstream tasks to be performed on them. The two
 forms of data are first separated.

 Audio data is first transformed by Short-Time Fourier
 Transform (STFT), which is then used to calculate the
 Root Mean Square (RMS) energy for identifying the
 moments of key presses [1]. Figure 1 demonstrates the
 RMS energy graph for 30 key presses.

 Previous methods used a rough fixed estimation of the
 key press time window (around 0.3 seconds). In this
 project, a new algorithm is developed for variable length
 keypress detection. Given the RMS energy graph, remove
 the background noise by ignoring anything lower than a
 certain threshold energy level (e.g., 0.002). Then iterate
 through the energy graph and compute the rough windows
 of key presses by identifying where the energy level drops
 and rises again. In other words, by identifying the gaps
 between key presses, we know the “inverse” is the
 keypress windows. Make sure that each keypress window
 has a maximum energy level that surpasses another higher
 threshold (e.g., 0.005) so that it will filter out noisy
 windows where no keypress happened. The rough time
 windows that we have now will have some cut off at the
 beginning and the end due to the thresholding. The

 algorithm then tries to expand the two ends of the window
 if the energy level keeps falling, i.e., no new peaks
 happen, meaning that the sound produced is a part of the
 same key press. Now we have segmented the entire audio
 data into different keypresses. Mel-spectrogram is used to
 visualize the key strokes as it can capture the fine details
 in the audio data.

 With the identified time window for each keypress, we
 identified through experimentation that the exact video
 frame of the keypress is right before the middle of the
 window. The video frame is extracted and a homography
 is calculated to correct the perspective of the keyboard.
 This is to ensure that we always have a rectangular
 representation of the keyboard and the viewing angle is
 consistent no matter what angle the original video has.
 Figure 3 shows the perspective-corrected image.

 With the Mel-spectrogram of the audio and the corrected
 video frames, the data is ready for processing by the
 neural network.

 3.2. Neural Network

 The Mel-spectrogram of the audio is then input to a
 custom CNN network with 2 convolution layers (with
 max pooling and ReLU activations) and 2 fully connected
 layers (with dropouts). The output is a 128 dimension
 latent embedding of the audio information.

 The video input is passed through a ResNet-18 and also
 outputs a 128 dimension embedding for further
 processing [3].

 3.3. Attention Mechanism

 Since the two embeddings (from audio and video frame)
 will jointly help make the final decision, an attention
 mechanism is used to determine the weight to put on each
 embedding when making the final decision. The attention
 is made up of two fully connected layers outputting 2
 normalized attention weights for the audio and video
 frame embedding. The weights determine how much
 emphasis will be put on each form of input, and it is
 learned during the training so that different keypresses
 would have different weights. This way, every keypress
 can rely on the more differentiating piece of information
 to determine the output while the other input can help rule
 out incorrect classes when needed.

 3.4. Training Coordination for Multi-modal Model

 When training a multi-modal model, it is often found that
 the model relies on only one form of input while ignoring
 the other. And this is found during the training phase of
 this project as well. The model initially puts attention
 (almost) solely on the video frame embeddings. And that
 is expected due to the fact that the video frame contains
 much more information than the sound - and it is easy to
 make predictions on the keypresses just based on the
 image. Therefore, the video network quickly gains
 “traction” while the audio pipeline still struggles to
 produce meaningful inferences. However, by testing only
 the audio pipeline, we can observe that the audio
 information does provide meaningful outputs (i.e.,
 decrease in loss and increase in training/validation
 accuracies) - it just requires more training than the video
 frame.

 In order to synchronize the training and effectively utilize
 both forms of input, 2 measures are put in place:

 1. The audio model is pre-trained by 100 epochs to make
 up for the fact that it needs more time to train than the
 video pipeline. Then the combined input will be passed
 into the model to be trained.

 2. A regularization step is added to the loss, so that if the
 attention weights are largely skewed towards one form of
 input, the model will be penalized by a larger loss. The
 regularization loss is the squared difference between the 2
 attention weights, multiplied by a tunable hyperparameter
 λ (e.g., λ = 0.04).

 3.5. GPT Integration for Coherence

 The output string of a series of keypresses can be noisy if
 the input leads to some misclassifications. It also lacks
 punctuation and capitalization. Instead of increasing the
 model complexity, pre-trained LLMs like GPT-3.5 by
 OpenAI can effectively correct those noises and make
 accurate predictions in punctuations and capitalizations.
 The LLM is trained on large text corpus containing
 natural human languages. Given a noisy text, it can
 recover the original sentence with extremely high
 accuracy.

 4. Results
 4.1. Training Results

 The training is split into 2 stages as described in Section
 3.4. The first part of the training is done only on the audio
 input.

 From Figure 4, it is clear that the audio input does contain
 critical information that helps the classification task. The
 training accuracy can reach 90%+ and the validation
 accuracy converges to around 85%.

 Then the combined training is conducted for the final
 result.

 With pre-trained weights from the audio training, the
 combined training converges much quicker. After around
 10 epochs, it already reaches 99%+ training and
 validation accuracy. This shows that the model is not
 overfitting, instead, it learns the boundaries between
 different key presses and can classify them very well.

 4.2. Testing Results

 For testing, another 81 new, randomly selected key
 presses are chosen. The trained model classifies those 81
 key presses with 100% accuracy. The attention weights
 put on the two forms of input have very different values,
 which shows that different key presses put emphasis on
 different sources of input. Furthermore, they do not take
 on extreme values (e.g., values very close to 1 or 0) shows
 that they utilize both inputs to make the final decision.

 However, it is worth noting that test audio and video are
 taken under similar settings as the training and on the
 same keyboard. But noticeable differences can be
 observed in terms of ambient lighting and keypress
 pressures (as keypresses made by hands are inconsistent
 and the sounds made by the presses are inherently
 random). Therefore, the test results are meaningful.

 4.3. Power of Multiple Modality

 To see the power of multi-modality, we analyze the
 validation performance of individual forms of input and
 the combined. As shown in Figure 6, the accuracy on the
 validation set (a set that the trained model does not see,
 but we tuned the parameters on) is the highest for the
 combined model. This shows that the 2 modality
 combined provided better results compared to a single
 input.

 4.4. Organization by GPT

 The GPT3.5 by OpenAI corrects small mistakes and
 organizes the output. Although the test set reaches 100%
 accuracy, we did discover some misclassification during
 the training and validation, which could lead to errors in
 future testing.

 For example, a common error is misclassification between
 class 0 and 18 (letter A and S respectively). The two
 letters are close to each other in the middle row (of a
 Qwerty keyboard), hence confusions are likely. A test
 sentence “i like apples and bananas” can be recovered,
 with some probability, as “i like spples and bananss” . We
 put the recovered sentence into GPT 3.5 with the
 following prompt: “Please check for errors and respond
 with a correct and clean version of the following (and
 only the following)” . The GPT returns “ I like apples and
 bananas.”

 GPT also provides proper capitalization and punctuations.
 For example, a recovered sentence is “to get to the parkm
 i took a busl and after that i had some apples bananas
 and orangesm” . Notice that there are no capitalization
 and the punctuations are incorrectly classified as some
 letters (l and m). The corrected sentence by GPT is: “To
 get to the park, I took a bus, and after that, I had some
 apples, bananas, and oranges.”

 It is interesting that human typing errors often coincide
 with misclassifications. Human errors usually involve
 pressing the wrong key next to the correct one. This sort
 of behavior is expected by the GPT algorithm. The
 misclassifications of our model demonstrate the exact

 same behavior as the keys that are close to each other are
 the hardest to tell apart.

 5. Discussion
 5.1. Discussion on the Result

 The results of the project shows that the multi-modal
 method of keypress classification is highly effective. It
 gives a perfect testing accuracy. And it also shows that it
 surpasses the capability of a single source algorithm. This
 means that with a hidden camera and microphone, an
 attacker can gain secret information by monitoring the
 keypresses on a keyboard. This poses a severe security
 threat that people should be aware of. It is also worth
 noting that due to the simplicity of the model (and
 advancement in computing power), the training of such a
 model can be done in under 10 minutes (around 8 minutes
 in our setting). This means that even if we train the model
 from scratch, the system can be deployed in a relatively
 short time period.

 5.2. Limitations

 There are also some limitations on this model. For
 example, the relative position between the keyboard and
 the camera is roughly the same for our dataset. A
 drastically different setting would have an impact on the
 classification accuracy. However, with a more extensive
 dataset trained on a specific target, it is highly likely that
 the model would adapt to different settings - just like any
 other state-of-the-art classification algorithm. Even with
 this limitation, there are still many real world applications
 where this model would be sufficient. For example,
 training on the keypad of an ATM machine where the
 keypads are fixed in place and a hidden camera can be
 placed.

 5.3. Countermeasures

 Countermeasures of this attack can be divided into two
 parts:

 Since ML models are data-hungry, stopping data
 collection prevents such models from being trained. This
 can be scanning for hidden cameras, or designing specific
 communication methods that provide very little
 side-channel information.

 Another aspect is to stop the model from getting data for
 inference. For example, use your hand to block any vision
 when entering the password in public, or turning off the
 microphone and camera when you are entering password
 on a video call/live stream.

 In general, the awareness that you are potential on camera
 can help mitigate the negative effect of such attacks.

 6. Conclusion

 In conclusion, this project presents a new approach to
 keystroke inference through the integration of
 multi-modal machine learning techniques, using both
 audio and video data.

 By capturing the acoustic and visual signals of a person
 typing, the data is first preprocessed with a custom
 algorithm. Then the audio model is trained first. The
 combined training follows and an attention mechanism
 with regularization is used to ensure a balanced and
 accurate calculation. To mitigate the noise and potential
 misclassifications, a Generative Pre-trained Transformer
 (GPT) model is employed to improve the coherence of the
 output text.

 The findings show that the proposed model gives a great
 result in inferring the text typed by the victim. And the
 entire model can be trained and deployed within minutes.
 It serves as a reminder that it is critical to put in place
 countermeasures to ensure the safety of our sensitive data.

 7. References

 [1] J. Harrison, E. Toreini, and M. Mehrnezhad, “A
 practical deep learning-based acoustic side channel attack
 on keyboards,” 2023 IEEE European Symposium on
 Security and Privacy Workshops (EuroS&PW), vol.
 7, pp. 270–280, Jul. 2023.
 doi:10.1109/eurospw59978.2023.00034

 [2] Z. Yang, Y. Chen, Z. Sarwar, H. Schwartz, B. Y. Zhao,
 and H. Zheng, ‘Towards a General Video-based
 Keystroke Inference Attack’, in 32nd USENIX Security
 Symposium (USENIX Security 23), 2023, pp. 141–158.

 [3] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual
 learning for image recognition,” 2016 IEEE Conference
 on Computer Vision and Pattern Recognition (CVPR) ,
 Jun. 2016. doi:10.1109/cvpr.2016.90

 8. Appendix
 8.1. Data Collection Methods

 Data collection (recording) is done with a Logitech C922
 webcam (for audio and video). And typing is done on a
 Razer optical switch keyboard (no additional clicking
 aside from the switches and the impact of the keycaps
 with the frame).

 The camera is placed so that it can capture a (side-)
 frontal view of the typer’s hand. Each recording contains
 30 keystrokes from the typer. In total, 1620 individual
 keypresses are recorded for 26 letters and the space bar.

 8.2. Setup

 Training, validation and testing is done on a RTX 4070
 Super GPU in Windows 10 environment. The three
 datasets are randomly drawn from the collected data.

