Report: Multi-Modal Side-Channel Attack on Keyboard Presses

Yichen Cai, University of Toronto

Abstract

Side-channel attacks exploit the information leaked by
normal user activities to infer sensitive data. It poses a
threat to cybersecurity as it often leaks data in unexpected
ways. This project presents a novel approach to leaking
keystroke information using a multi-modal machine
learning algorithm that processes both audio and video
inputs. The audio input is segmented by an improved
algorithm that detects and estimates the time window for
each recorded keystroke. And with the time window, we
can easily predict the exact frame of the keypress within
the video input. Both inputs are processed with their
respective neural networks and their results are weighted
by an attention network which balances the two
modalities. Finally, the entire detected string is refined by
a pre-trained GPT model so that it enhances coherence
and denoises the string. This integrated approach
demonstrates significant potential in improving the
accuracy of keystroke side-channel attacks. Project code
is located at:
https://github.com/cycv5/SideChannelOnKeyboard

1. Introduction

Side-channel attacks have often emerged as unexpected
ways to leak sensitive information in cybersecurity. These
attacks leverage the unintended channels of emission like
electromagnetic radiation, power consumption, or
acoustic data, to infer the actual data being processed.
Acoustic side-channel attacks have been explored and
gained significant attention as it can capture keystroke
sounds and deduce the corresponding key.

This paper explores a novel approach to keystroke
side-channel inference by utilizing a multi-modal machine
learning algorithm that analyzes both acoustic and visual
information. Since video and audio capturing devices
have become easily accessible, it is feasible to get both
video and audio data from a person typing on a keyboard.
This can be done through a webcam (as in this project), a
smartphone, or a specially made hidden
camera/microphone device. The data are then

preprocessed by a custom algorithm to extract the audio
and video frame of the key presses. And the two types of
input are processed independently first and combined
later.

To address the potential noise in the inference due to
misclassification, a pre-train large language model (LLM)
is used (GPT 3.5) to refine, correct and clean the output.
This enhances the overall coherence of the output data.
The integrated method gives higher accuracy and more
robustness because of the LLM.

2. Related Work

Previous works on this topic have focused on a single
channel of attack.

A Practical Deep Learning-Based Acoustic Side
Channel Attack on Keyboards [1]

This paper proposed a method of extracting the data from
keyboard strokes audio. They recorded audio of people
typing on a keyboard and partitioned into fixed length
keystrokes. Then those data are augmented and trained
with a CoAtNet - a combination of CNN and the attention
mechanism. They found good accuracy with this method
(95% accuracy). However, this method requires clear
recording of the typing sound and errors are seen for keys
that are close to each other.

Towards a General Video-based Keystroke Inference
Attack [2]

This paper proposed a video-based method for detecting
keystrokes. It uses hand recognition to build a model of
touch points on a plane and determine which keys are
pressed. The paper measures the semantic similarity and
shows that with an indoor setting, the similarity score can
be 98%+. However, this requires a clear detection of key
presses (and a frontal view of the typer) - without
additional visual distractions.

3. Method

The combination of the audio and video input can create a
more robust yet simpler detection algorithm. The audio
data can help pinpoint the exact time of key presses, thus

giving us the timing information for a keypress. This, in a
way, denoises the video feed and aids us in finding the
corresponding frames in the video. The video, at the same
time, gives a direct view of the hand positions that helps
with the final classification result, paired with the audio
data. This is especially helpful to distinguish key presses
that are close to each other. Finally, a pre-trained LLM
model will be employed to fix any noise in the output.

3.1. Data Preprocess

Audio and video data captured must be preprocessed for
the downstream tasks to be performed on them. The two
forms of data are first separated.

Audio data is first transformed by Short-Time Fourier
Transform (STFT), which is then used to calculate the
Root Mean Square (RMS) energy for identifying the
moments of key presses [1]. Figure 1 demonstrates the
RMS energy graph for 30 key presses.

RMS Energy of Audio Signal

1 — RrMs Energy

0.05

RMS Energy
o
K
2

0.03 4

0.02 4

L L

0 5 1o 15 20 2 E)
Time (s)

Figure 1: RMS energy of 30 key presses.

Previous methods used a rough fixed estimation of the
key press time window (around 0.3 seconds). In this
project, a new algorithm is developed for variable length
keypress detection. Given the RMS energy graph, remove
the background noise by ignoring anything lower than a
certain threshold energy level (e.g., 0.002). Then iterate
through the energy graph and compute the rough windows
of key presses by identifying where the energy level drops
and rises again. In other words, by identifying the gaps
between key presses, we know the “inverse” is the
keypress windows. Make sure that each keypress window
has a maximum energy level that surpasses another higher
threshold (e.g., 0.005) so that it will filter out noisy
windows where no keypress happened. The rough time
windows that we have now will have some cut off at the
beginning and the end due to the thresholding. The

algorithm then tries to expand the two ends of the window
if the energy level keeps falling, i.e., no new peaks
happen, meaning that the sound produced is a part of the
same key press. Now we have segmented the entire audio
data into different keypresses. Mel-spectrogram is used to
visualize the key strokes as it can capture the fine details
in the audio data.

Mel-Spectrogram

+0dB

-10 dB

-20dB

-30 dB

-40 dB

-50 dB

-60 dB

-70 dB

-80 dB

Time

Mel-Spectrogram
i 9 +0dB

-10 dB
-20 dB
-30 dB
-40 dB
-50 dB
-60 dB
-70 dB

-80 dB
0.5

Figure 2: Mel-spectrogram of typing letter A and P. Black areas are padding.

With the identified time window for each keypress, we
identified through experimentation that the exact video
frame of the keypress is right before the middle of the
window. The video frame is extracted and a homography
is calculated to correct the perspective of the keyboard.
This is to ensure that we always have a rectangular
representation of the keyboard and the viewing angle is
consistent no matter what angle the original video has.
Figure 3 shows the perspective-corrected image.

Figure 3: Perspective Corrected video frames of typing the letter A and P.

With the Mel-spectrogram of the audio and the corrected
video frames, the data is ready for processing by the
neural network.

3.2. Neural Network

The Mel-spectrogram of the audio is then input to a
custom CNN network with 2 convolution layers (with
max pooling and ReLU activations) and 2 fully connected
layers (with dropouts). The output is a 128 dimension
latent embedding of the audio information.

The video input is passed through a ResNet-18 and also
outputs a 128 dimension embedding for further
processing [3].

3.3. Attention Mechanism

Since the two embeddings (from audio and video frame)
will jointly help make the final decision, an attention
mechanism is used to determine the weight to put on each
embedding when making the final decision. The attention
is made up of two fully connected layers outputting 2
normalized attention weights for the audio and video
frame embedding. The weights determine how much
emphasis will be put on each form of input, and it is
learned during the training so that different keypresses
would have different weights. This way, every keypress
can rely on the more differentiating piece of information
to determine the output while the other input can help rule
out incorrect classes when needed.

3.4. Training Coordination for Multi-modal Model

When training a multi-modal model, it is often found that
the model relies on only one form of input while ignoring
the other. And this is found during the training phase of
this project as well. The model initially puts attention
(almost) solely on the video frame embeddings. And that
is expected due to the fact that the video frame contains
much more information than the sound - and it is easy to
make predictions on the keypresses just based on the
image. Therefore, the video network quickly gains
“traction” while the audio pipeline still struggles to
produce meaningful inferences. However, by testing only
the audio pipeline, we can observe that the audio
information does provide meaningful outputs (i.e.,
decrease in loss and increase in training/validation
accuracies) - it just requires more training than the video
frame.

In order to synchronize the training and effectively utilize
both forms of input, 2 measures are put in place:

1. The audio model is pre-trained by 100 epochs to make
up for the fact that it needs more time to train than the
video pipeline. Then the combined input will be passed
into the model to be trained.

2. A regularization step is added to the loss, so that if the
attention weights are largely skewed towards one form of
input, the model will be penalized by a larger loss. The
regularization loss is the squared difference between the 2
attention weights, multiplied by a tunable hyperparameter
A (e.g., A=10.04).

3.5. GPT Integration for Coherence

The output string of a series of keypresses can be noisy if
the input leads to some misclassifications. It also lacks
punctuation and capitalization. Instead of increasing the
model complexity, pre-trained LLMs like GPT-3.5 by
OpenAl can effectively correct those noises and make
accurate predictions in punctuations and capitalizations.
The LLM is trained on large text corpus containing
natural human languages. Given a noisy text, it can
recover the original sentence with extremely high
accuracy.

4. Results

4.1. Training Results

The training is split into 2 stages as described in Section
3.4. The first part of the training is done only on the audio
input.

Training and Validation Accuracy
— Training Acc AT
Validation Acc A~ N\
AN
J'\/\\"/\,
R

0.8 .

Va

0.6

Accuracy

0.2

0.0

0 20 40 60 80 100
Epoch

Figure 4: Training and validation accuracy for only audio input.

From Figure 4, it is clear that the audio input does contain
critical information that helps the classification task. The
training accuracy can reach 90%+ and the validation
accuracy converges to around 85%.

Then the combined training is conducted for the final
result.

Training and Validation Accuracy

—— Training Acc
—— Validation Acc

o 5 10 15 20 25 30
Epoch

Figure 5: Training and validation accuracy for the combined training stage.

With pre-trained weights from the audio training, the
combined training converges much quicker. After around
10 epochs, it already reaches 99%+ training and
validation accuracy. This shows that the model is not
overfitting, instead, it learns the boundaries between
different key presses and can classify them very well.

4.2. Testing Results

For testing, another 81 new, randomly selected key
presses are chosen. The trained model classifies those 81
key presses with 100% accuracy. The attention weights
put on the two forms of input have very different values,
which shows that different key presses put emphasis on
different sources of input. Furthermore, they do not take
on extreme values (e.g., values very close to 1 or 0) shows
that they utilize both inputs to make the final decision.

However, it is worth noting that test audio and video are
taken under similar settings as the training and on the
same keyboard. But noticeable differences can be
observed in terms of ambient lighting and keypress
pressures (as keypresses made by hands are inconsistent
and the sounds made by the presses are inherently
random). Therefore, the test results are meaningful.

4.3. Power of Multiple Modality

To see the power of multi-modality, we analyze the
validation performance of individual forms of input and
the combined. As shown in Figure 6, the accuracy on the
validation set (a set that the trained model does not see,
but we tuned the parameters on) is the highest for the
combined model. This shows that the 2 modality
combined provided better results compared to a single
input.

Accuracy on Validation Set
B Audio Only [l Video Only [Combined

100.00%

75.00%

50.00%

25.00%

0.00%

Accuracy

Figure 6: Validation accuracy with different sources of input.

4.4. Organization by GPT

The GPT3.5 by OpenAl corrects small mistakes and
organizes the output. Although the test set reaches 100%
accuracy, we did discover some misclassification during
the training and validation, which could lead to errors in
future testing.

For example, a common error is misclassification between
class 0 and 18 (letter A and S respectively). The two
letters are close to each other in the middle row (of a
Qwerty keyboard), hence confusions are likely. A test
sentence ‘i like apples and bananas” can be recovered,
with some probability, as “i like spples and bananss”. We
put the recovered sentence into GPT 3.5 with the
following prompt: “Please check for errors and respond
with a correct and clean version of the following (and
only the following)”. The GPT returns “I like apples and
bananas.”

GPT also provides proper capitalization and punctuations.
For example, a recovered sentence is “to get to the parkm
i took a busl and after that i had some apples bananas
and orangesm”. Notice that there are no capitalization
and the punctuations are incorrectly classified as some
letters (1 and m). The corrected sentence by GPT is: “To
get to the park, I took a bus, and after that, I had some
apples, bananas, and oranges.”

It is interesting that human typing errors often coincide
with misclassifications. Human errors usually involve
pressing the wrong key next to the correct one. This sort
of behavior is expected by the GPT algorithm. The
misclassifications of our model demonstrate the exact

same behavior as the keys that are close to each other are
the hardest to tell apart.

5. Discussion
5.1. Discussion on the Result

The results of the project shows that the multi-modal
method of keypress classification is highly effective. It
gives a perfect testing accuracy. And it also shows that it
surpasses the capability of a single source algorithm. This
means that with a hidden camera and microphone, an
attacker can gain secret information by monitoring the
keypresses on a keyboard. This poses a severe security
threat that people should be aware of. It is also worth
noting that due to the simplicity of the model (and
advancement in computing power), the training of such a
model can be done in under 10 minutes (around 8 minutes
in our setting). This means that even if we train the model
from scratch, the system can be deployed in a relatively
short time period.

5.2. Limitations

There are also some limitations on this model. For
example, the relative position between the keyboard and
the camera is roughly the same for our dataset. A
drastically different setting would have an impact on the
classification accuracy. However, with a more extensive
dataset trained on a specific target, it is highly likely that
the model would adapt to different settings - just like any
other state-of-the-art classification algorithm. Even with
this limitation, there are still many real world applications
where this model would be sufficient. For example,
training on the keypad of an ATM machine where the
keypads are fixed in place and a hidden camera can be
placed.

5.3. Countermeasures

Countermeasures of this attack can be divided into two
parts:

Since ML models are data-hungry, stopping data
collection prevents such models from being trained. This
can be scanning for hidden cameras, or designing specific
communication methods that provide very little
side-channel information.

Another aspect is to stop the model from getting data for
inference. For example, use your hand to block any vision
when entering the password in public, or turning off the
microphone and camera when you are entering password
on a video call/live stream.

In general, the awareness that you are potential on camera
can help mitigate the negative effect of such attacks.

6. Conclusion

In conclusion, this project presents a new approach to
keystroke inference through the integration of
multi-modal machine learning techniques, using both
audio and video data.

By capturing the acoustic and visual signals of a person
typing, the data is first preprocessed with a custom
algorithm. Then the audio model is trained first. The
combined training follows and an attention mechanism
with regularization is used to ensure a balanced and
accurate calculation. To mitigate the noise and potential
misclassifications, a Generative Pre-trained Transformer
(GPT) model is employed to improve the coherence of the
output text.

The findings show that the proposed model gives a great
result in inferring the text typed by the victim. And the
entire model can be trained and deployed within minutes.
It serves as a reminder that it is critical to put in place
countermeasures to ensure the safety of our sensitive data.

7. References

[1] J. Harrison, E. Toreini, and M. Mehrnezhad, “A
practical deep learning-based acoustic side channel attack
on keyboards,” 2023 IEEE European Symposium on
Security and Privacy Workshops (EuroS&PW), vol.
7, pp- 270-280, Jul. 2023.
doi:10.1109/eurospw59978.2023.00034

[2] Z. Yang, Y. Chen, Z. Sarwar, H. Schwartz, B. Y. Zhao,
and H. Zheng, ‘Towards a General Video-based
Keystroke Inference Attack’, in 32nd USENIX Security
Symposium (USENIX Security 23), 2023, pp. 141-158.

[3] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual
learning for image recognition,” 2016 IEEE Conference
on Computer Vision and Pattern Recognition (CVPR),
Jun. 2016. doi:10.1109/cvpr.2016.90

8. Appendix
8.1. Data Collection Methods

Data collection (recording) is done with a Logitech C922
webcam (for audio and video). And typing is done on a
Razer optical switch keyboard (no additional clicking
aside from the switches and the impact of the keycaps
with the frame).

The camera is placed so that it can capture a (side-)
frontal view of the typer’s hand. Each recording contains
30 keystrokes from the typer. In total, 1620 individual
keypresses are recorded for 26 letters and the space bar.

8.2. Setup

Training, validation and testing is done on a RTX 4070
Super GPU in Windows 10 environment. The three
datasets are randomly drawn from the collected data.

