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 Abstract 

 Side-channel  attacks  exploit  the  information  leaked  by 
 normal  user  activities  to  infer  sensitive  data.  It  poses  a 
 threat  to  cybersecurity  as  it  often  leaks  data  in  unexpected 
 ways.  This  project  presents  a  novel  approach  to  leaking 
 keystroke  information  using  a  multi-modal  machine 
 learning  algorithm  that  processes  both  audio  and  video 
 inputs.  The  audio  input  is  segmented  by  an  improved 
 algorithm  that  detects  and  estimates  the  time  window  for 
 each  recorded  keystroke.  And  with  the  time  window,  we 
 can  easily  predict  the  exact  frame  of  the  keypress  within 
 the  video  input.  Both  inputs  are  processed  with  their 
 respective  neural  networks  and  their  results  are  weighted 
 by  an  attention  network  which  balances  the  two 
 modalities.  Finally,  the  entire  detected  string  is  refined  by 
 a  pre-trained  GPT  model  so  that  it  enhances  coherence 
 and  denoises  the  string.  This  integrated  approach 
 demonstrates  significant  potential  in  improving  the 
 accuracy  of  keystroke  side-channel  attacks.  Project  code 
 is  located  at: 
 https://github.com/cycv5/SideChannelOnKeyboard 

 1. Introduction 

 Side-channel  attacks  have  often  emerged  as  unexpected 
 ways  to  leak  sensitive  information  in  cybersecurity.  These 
 attacks  leverage  the  unintended  channels  of  emission  like 
 electromagnetic  radiation,  power  consumption,  or 
 acoustic  data,  to  infer  the  actual  data  being  processed. 
 Acoustic  side-channel  attacks  have  been  explored  and 
 gained  significant  attention  as  it  can  capture  keystroke 
 sounds and deduce the corresponding key. 

 This  paper  explores  a  novel  approach  to  keystroke 
 side-channel  inference  by  utilizing  a  multi-modal  machine 
 learning  algorithm  that  analyzes  both  acoustic  and  visual 
 information.  Since  video  and  audio  capturing  devices 
 have  become  easily  accessible,  it  is  feasible  to  get  both 
 video  and  audio  data  from  a  person  typing  on  a  keyboard. 
 This  can  be  done  through  a  webcam  (as  in  this  project),  a 
 smartphone,  or  a  specially  made  hidden 
 camera/microphone  device.  The  data  are  then 

 preprocessed  by  a  custom  algorithm  to  extract  the  audio 
 and  video  frame  of  the  key  presses.  And  the  two  types  of 
 input  are  processed  independently  first  and  combined 
 later. 

 To  address  the  potential  noise  in  the  inference  due  to 
 misclassification,  a  pre-train  large  language  model  (LLM) 
 is  used  (GPT  3.5)  to  refine,  correct  and  clean  the  output. 
 This  enhances  the  overall  coherence  of  the  output  data. 
 The  integrated  method  gives  higher  accuracy  and  more 
 robustness because of the LLM. 

 2. Related Work 

 Previous  works  on  this  topic  have  focused  on  a  single 
 channel of attack. 

 A  Practical  Deep  Learning-Based  Acoustic  Side 
 Channel Attack on Keyboards [1] 

 This  paper  proposed  a  method  of  extracting  the  data  from 
 keyboard  strokes  audio.  They  recorded  audio  of  people 
 typing  on  a  keyboard  and  partitioned  into  fixed  length 
 keystrokes.  Then  those  data  are  augmented  and  trained 
 with  a  CoAtNet  -  a  combination  of  CNN  and  the  attention 
 mechanism.  They  found  good  accuracy  with  this  method 
 (95%  accuracy).  However,  this  method  requires  clear 
 recording  of  the  typing  sound  and  errors  are  seen  for  keys 
 that are close to each other. 

 Towards  a  General  Video-based  Keystroke  Inference 
 Attack [2] 

 This  paper  proposed  a  video-based  method  for  detecting 
 keystrokes.  It  uses  hand  recognition  to  build  a  model  of 
 touch  points  on  a  plane  and  determine  which  keys  are 
 pressed.  The  paper  measures  the  semantic  similarity  and 
 shows  that  with  an  indoor  setting,  the  similarity  score  can 
 be  98%+.  However,  this  requires  a  clear  detection  of  key 
 presses  (and  a  frontal  view  of  the  typer)  -  without 
 additional visual distractions. 

 3. Method 

 The  combination  of  the  audio  and  video  input  can  create  a 
 more  robust  yet  simpler  detection  algorithm.  The  audio 
 data  can  help  pinpoint  the  exact  time  of  key  presses,  thus 



 giving  us  the  timing  information  for  a  keypress.  This,  in  a 
 way,  denoises  the  video  feed  and  aids  us  in  finding  the 
 corresponding  frames  in  the  video.  The  video,  at  the  same 
 time,  gives  a  direct  view  of  the  hand  positions  that  helps 
 with  the  final  classification  result,  paired  with  the  audio 
 data.  This  is  especially  helpful  to  distinguish  key  presses 
 that  are  close  to  each  other.  Finally,  a  pre-trained  LLM 
 model will be employed to fix any noise in the output. 

 3.1. Data Preprocess 

 Audio  and  video  data  captured  must  be  preprocessed  for 
 the  downstream  tasks  to  be  performed  on  them.  The  two 
 forms of data are first separated. 

 Audio  data  is  first  transformed  by  Short-Time  Fourier 
 Transform  (STFT),  which  is  then  used  to  calculate  the 
 Root  Mean  Square  (RMS)  energy  for  identifying  the 
 moments  of  key  presses  [1].  Figure  1  demonstrates  the 
 RMS energy graph for 30 key presses. 

 Previous  methods  used  a  rough  fixed  estimation  of  the 
 key  press  time  window  (around  0.3  seconds).  In  this 
 project,  a  new  algorithm  is  developed  for  variable  length 
 keypress  detection.  Given  the  RMS  energy  graph,  remove 
 the  background  noise  by  ignoring  anything  lower  than  a 
 certain  threshold  energy  level  (e.g.,  0.002).  Then  iterate 
 through  the  energy  graph  and  compute  the  rough  windows 
 of  key  presses  by  identifying  where  the  energy  level  drops 
 and  rises  again.  In  other  words,  by  identifying  the  gaps 
 between  key  presses,  we  know  the  “inverse”  is  the 
 keypress  windows.  Make  sure  that  each  keypress  window 
 has  a  maximum  energy  level  that  surpasses  another  higher 
 threshold  (e.g.,  0.005)  so  that  it  will  filter  out  noisy 
 windows  where  no  keypress  happened.  The  rough  time 
 windows  that  we  have  now  will  have  some  cut  off  at  the 
 beginning  and  the  end  due  to  the  thresholding.  The 

 algorithm  then  tries  to  expand  the  two  ends  of  the  window 
 if  the  energy  level  keeps  falling,  i.e.,  no  new  peaks 
 happen,  meaning  that  the  sound  produced  is  a  part  of  the 
 same  key  press.  Now  we  have  segmented  the  entire  audio 
 data  into  different  keypresses.  Mel-spectrogram  is  used  to 
 visualize  the  key  strokes  as  it  can  capture  the  fine  details 
 in the audio data. 

 With  the  identified  time  window  for  each  keypress,  we 
 identified  through  experimentation  that  the  exact  video 
 frame  of  the  keypress  is  right  before  the  middle  of  the 
 window.  The  video  frame  is  extracted  and  a  homography 
 is  calculated  to  correct  the  perspective  of  the  keyboard. 
 This  is  to  ensure  that  we  always  have  a  rectangular 
 representation  of  the  keyboard  and  the  viewing  angle  is 
 consistent  no  matter  what  angle  the  original  video  has. 
 Figure 3 shows the perspective-corrected image. 



 With  the  Mel-spectrogram  of  the  audio  and  the  corrected 
 video  frames,  the  data  is  ready  for  processing  by  the 
 neural network. 

 3.2. Neural Network 

 The  Mel-spectrogram  of  the  audio  is  then  input  to  a 
 custom  CNN  network  with  2  convolution  layers  (with 
 max  pooling  and  ReLU  activations)  and  2  fully  connected 
 layers  (with  dropouts).  The  output  is  a  128  dimension 
 latent embedding of the audio information. 

 The  video  input  is  passed  through  a  ResNet-18  and  also 
 outputs  a  128  dimension  embedding  for  further 
 processing [3]. 

 3.3. Attention Mechanism 

 Since  the  two  embeddings  (from  audio  and  video  frame) 
 will  jointly  help  make  the  final  decision,  an  attention 
 mechanism  is  used  to  determine  the  weight  to  put  on  each 
 embedding  when  making  the  final  decision.  The  attention 
 is  made  up  of  two  fully  connected  layers  outputting  2 
 normalized  attention  weights  for  the  audio  and  video 
 frame  embedding.  The  weights  determine  how  much 
 emphasis  will  be  put  on  each  form  of  input,  and  it  is 
 learned  during  the  training  so  that  different  keypresses 
 would  have  different  weights.  This  way,  every  keypress 
 can  rely  on  the  more  differentiating  piece  of  information 
 to  determine  the  output  while  the  other  input  can  help  rule 
 out incorrect classes when needed. 

 3.4. Training Coordination for Multi-modal Model 

 When  training  a  multi-modal  model,  it  is  often  found  that 
 the  model  relies  on  only  one  form  of  input  while  ignoring 
 the  other.  And  this  is  found  during  the  training  phase  of 
 this  project  as  well.  The  model  initially  puts  attention 
 (almost)  solely  on  the  video  frame  embeddings.  And  that 
 is  expected  due  to  the  fact  that  the  video  frame  contains 
 much  more  information  than  the  sound  -  and  it  is  easy  to 
 make  predictions  on  the  keypresses  just  based  on  the 
 image.  Therefore,  the  video  network  quickly  gains 
 “traction”  while  the  audio  pipeline  still  struggles  to 
 produce  meaningful  inferences.  However,  by  testing  only 
 the  audio  pipeline,  we  can  observe  that  the  audio 
 information  does  provide  meaningful  outputs  (i.e., 
 decrease  in  loss  and  increase  in  training/validation 
 accuracies)  -  it  just  requires  more  training  than  the  video 
 frame. 

 In  order  to  synchronize  the  training  and  effectively  utilize 
 both forms of input, 2 measures are put in place: 

 1.  The  audio  model  is  pre-trained  by  100  epochs  to  make 
 up  for  the  fact  that  it  needs  more  time  to  train  than  the 
 video  pipeline.  Then  the  combined  input  will  be  passed 
 into the model to be trained. 

 2.  A  regularization  step  is  added  to  the  loss,  so  that  if  the 
 attention  weights  are  largely  skewed  towards  one  form  of 
 input,  the  model  will  be  penalized  by  a  larger  loss.  The 
 regularization  loss  is  the  squared  difference  between  the  2 
 attention  weights,  multiplied  by  a  tunable  hyperparameter 
 λ (e.g., λ = 0.04). 

 3.5. GPT Integration for Coherence 

 The  output  string  of  a  series  of  keypresses  can  be  noisy  if 
 the  input  leads  to  some  misclassifications.  It  also  lacks 
 punctuation  and  capitalization.  Instead  of  increasing  the 
 model  complexity,  pre-trained  LLMs  like  GPT-3.5  by 
 OpenAI  can  effectively  correct  those  noises  and  make 
 accurate  predictions  in  punctuations  and  capitalizations. 
 The  LLM  is  trained  on  large  text  corpus  containing 
 natural  human  languages.  Given  a  noisy  text,  it  can 
 recover  the  original  sentence  with  extremely  high 
 accuracy. 

 4. Results 
 4.1. Training Results 

 The  training  is  split  into  2  stages  as  described  in  Section 
 3.4.  The  first  part  of  the  training  is  done  only  on  the  audio 
 input. 

 From  Figure  4,  it  is  clear  that  the  audio  input  does  contain 
 critical  information  that  helps  the  classification  task.  The 
 training  accuracy  can  reach  90%+  and  the  validation 
 accuracy converges to around 85%. 

 Then  the  combined  training  is  conducted  for  the  final 
 result. 



 With  pre-trained  weights  from  the  audio  training,  the 
 combined  training  converges  much  quicker.  After  around 
 10  epochs,  it  already  reaches  99%+  training  and 
 validation  accuracy.  This  shows  that  the  model  is  not 
 overfitting,  instead,  it  learns  the  boundaries  between 
 different key presses and can classify them very well. 

 4.2. Testing Results 

 For  testing,  another  81  new,  randomly  selected  key 
 presses  are  chosen.  The  trained  model  classifies  those  81 
 key  presses  with  100%  accuracy.  The  attention  weights 
 put  on  the  two  forms  of  input  have  very  different  values, 
 which  shows  that  different  key  presses  put  emphasis  on 
 different  sources  of  input.  Furthermore,  they  do  not  take 
 on  extreme  values  (e.g.,  values  very  close  to  1  or  0)  shows 
 that they utilize both inputs to make the final decision. 

 However,  it  is  worth  noting  that  test  audio  and  video  are 
 taken  under  similar  settings  as  the  training  and  on  the 
 same  keyboard.  But  noticeable  differences  can  be 
 observed  in  terms  of  ambient  lighting  and  keypress 
 pressures  (as  keypresses  made  by  hands  are  inconsistent 
 and  the  sounds  made  by  the  presses  are  inherently 
 random). Therefore, the test results are meaningful. 

 4.3. Power of Multiple Modality 

 To  see  the  power  of  multi-modality,  we  analyze  the 
 validation  performance  of  individual  forms  of  input  and 
 the  combined.  As  shown  in  Figure  6,  the  accuracy  on  the 
 validation  set  (a  set  that  the  trained  model  does  not  see, 
 but  we  tuned  the  parameters  on)  is  the  highest  for  the 
 combined  model.  This  shows  that  the  2  modality 
 combined  provided  better  results  compared  to  a  single 
 input. 

 4.4. Organization by GPT 

 The  GPT3.5  by  OpenAI  corrects  small  mistakes  and 
 organizes  the  output.  Although  the  test  set  reaches  100% 
 accuracy,  we  did  discover  some  misclassification  during 
 the  training  and  validation,  which  could  lead  to  errors  in 
 future testing. 

 For  example,  a  common  error  is  misclassification  between 
 class  0  and  18  (letter  A  and  S  respectively).  The  two 
 letters  are  close  to  each  other  in  the  middle  row  (of  a 
 Qwerty  keyboard),  hence  confusions  are  likely.  A  test 
 sentence  “i  like  apples  and  bananas”  can  be  recovered, 
 with  some  probability,  as  “i  like  spples  and  bananss”  .  We 
 put  the  recovered  sentence  into  GPT  3.5  with  the 
 following  prompt:  “Please  check  for  errors  and  respond 
 with  a  correct  and  clean  version  of  the  following  (and 
 only  the  following)”  .  The  GPT  returns  “  I  like  apples  and 
 bananas.” 

 GPT  also  provides  proper  capitalization  and  punctuations. 
 For  example,  a  recovered  sentence  is  “to  get  to  the  parkm 
 i  took  a  busl  and  after  that  i  had  some  apples  bananas 
 and  orangesm”  .  Notice  that  there  are  no  capitalization 
 and  the  punctuations  are  incorrectly  classified  as  some 
 letters  (l  and  m).  The  corrected  sentence  by  GPT  is:  “To 
 get  to  the  park,  I  took  a  bus,  and  after  that,  I  had  some 
 apples, bananas, and oranges.” 

 It  is  interesting  that  human  typing  errors  often  coincide 
 with  misclassifications.  Human  errors  usually  involve 
 pressing  the  wrong  key  next  to  the  correct  one.  This  sort 
 of  behavior  is  expected  by  the  GPT  algorithm.  The 
 misclassifications  of  our  model  demonstrate  the  exact 



 same  behavior  as  the  keys  that  are  close  to  each  other  are 
 the hardest to tell apart. 

 5. Discussion 
 5.1. Discussion on the Result 

 The  results  of  the  project  shows  that  the  multi-modal 
 method  of  keypress  classification  is  highly  effective.  It 
 gives  a  perfect  testing  accuracy.  And  it  also  shows  that  it 
 surpasses  the  capability  of  a  single  source  algorithm.  This 
 means  that  with  a  hidden  camera  and  microphone,  an 
 attacker  can  gain  secret  information  by  monitoring  the 
 keypresses  on  a  keyboard.  This  poses  a  severe  security 
 threat  that  people  should  be  aware  of.  It  is  also  worth 
 noting  that  due  to  the  simplicity  of  the  model  (and 
 advancement  in  computing  power),  the  training  of  such  a 
 model  can  be  done  in  under  10  minutes  (around  8  minutes 
 in  our  setting).  This  means  that  even  if  we  train  the  model 
 from  scratch,  the  system  can  be  deployed  in  a  relatively 
 short time period. 

 5.2. Limitations 

 There  are  also  some  limitations  on  this  model.  For 
 example,  the  relative  position  between  the  keyboard  and 
 the  camera  is  roughly  the  same  for  our  dataset.  A 
 drastically  different  setting  would  have  an  impact  on  the 
 classification  accuracy.  However,  with  a  more  extensive 
 dataset  trained  on  a  specific  target,  it  is  highly  likely  that 
 the  model  would  adapt  to  different  settings  -  just  like  any 
 other  state-of-the-art  classification  algorithm.  Even  with 
 this  limitation,  there  are  still  many  real  world  applications 
 where  this  model  would  be  sufficient.  For  example, 
 training  on  the  keypad  of  an  ATM  machine  where  the 
 keypads  are  fixed  in  place  and  a  hidden  camera  can  be 
 placed. 

 5.3. Countermeasures 

 Countermeasures  of  this  attack  can  be  divided  into  two 
 parts: 

 Since  ML  models  are  data-hungry,  stopping  data 
 collection  prevents  such  models  from  being  trained.  This 
 can  be  scanning  for  hidden  cameras,  or  designing  specific 
 communication  methods  that  provide  very  little 
 side-channel information. 

 Another  aspect  is  to  stop  the  model  from  getting  data  for 
 inference.  For  example,  use  your  hand  to  block  any  vision 
 when  entering  the  password  in  public,  or  turning  off  the 
 microphone  and  camera  when  you  are  entering  password 
 on a video call/live stream. 

 In  general,  the  awareness  that  you  are  potential  on  camera 
 can help mitigate the negative effect of such attacks. 

 6. Conclusion 

 In  conclusion,  this  project  presents  a  new  approach  to 
 keystroke  inference  through  the  integration  of 
 multi-modal  machine  learning  techniques,  using  both 
 audio and video data. 

 By  capturing  the  acoustic  and  visual  signals  of  a  person 
 typing,  the  data  is  first  preprocessed  with  a  custom 
 algorithm.  Then  the  audio  model  is  trained  first.  The 
 combined  training  follows  and  an  attention  mechanism 
 with  regularization  is  used  to  ensure  a  balanced  and 
 accurate  calculation.  To  mitigate  the  noise  and  potential 
 misclassifications,  a  Generative  Pre-trained  Transformer 
 (GPT)  model  is  employed  to  improve  the  coherence  of  the 
 output text. 

 The  findings  show  that  the  proposed  model  gives  a  great 
 result  in  inferring  the  text  typed  by  the  victim.  And  the 
 entire  model  can  be  trained  and  deployed  within  minutes. 
 It  serves  as  a  reminder  that  it  is  critical  to  put  in  place 
 countermeasures to ensure the safety of our sensitive data. 
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 8. Appendix 
 8.1. Data Collection Methods 

 Data  collection  (recording)  is  done  with  a  Logitech  C922 
 webcam  (for  audio  and  video).  And  typing  is  done  on  a 
 Razer  optical  switch  keyboard  (no  additional  clicking 
 aside  from  the  switches  and  the  impact  of  the  keycaps 
 with the frame). 

 The  camera  is  placed  so  that  it  can  capture  a  (side-) 
 frontal  view  of  the  typer’s  hand.  Each  recording  contains 
 30  keystrokes  from  the  typer.  In  total,  1620  individual 
 keypresses are recorded for 26 letters and the space bar. 

 8.2. Setup 

 Training,  validation  and  testing  is  done  on  a  RTX  4070 
 Super  GPU  in  Windows  10  environment.  The  three 
 datasets are randomly drawn from the collected data. 


